Isolation of capsid protein dimers from the tick-borne encephalitis flavivirus and in vitro assembly of capsid-like particles.

نویسندگان

  • Stefan Kiermayr
  • Regina M Kofler
  • Christian W Mandl
  • Paul Messner
  • Franz X Heinz
چکیده

Flaviviruses have a spherical capsid that is composed of multiple copies of a single capsid protein and, in contrast to the viral envelope, apparently does not have an icosahedral structure. So far, attempts to isolate distinct particulate capsids and soluble forms of the capsid protein from purified virions as well as to assemble capsid-like particles in vitro have been largely unsuccessful. Here we describe the isolation of nucleocapsids from tick-borne encephalitis (TBE) virus and their disintegration into a capsid protein dimer by high-salt treatment. Purified capsid protein dimers could be assembled in vitro into capsid-like particles when combined with in vitro transcribed viral RNA. Particulate structures could also be obtained when single-stranded DNA oligonucleotides were used. These data suggest that the dimeric capsid protein functions as a basic building block in the assembly process of flaviviruses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favorable target for attenuation of virulence.

Deletions ranging in size from 4 to 21 amino acid residues were introduced into the capsid protein of the flavivirus tick-borne encephalitis (TBE) virus. These deletions incrementally affected a hydrophobic domain which is present at the center of all flavivirus capsid protein sequences and part of which may form an amphipathic alpha-helix. In the context of the full-length TBE genome, the dele...

متن کامل

Viperin Targets Flavivirus Virulence by Inducing Assembly of Noninfectious Capsid Particles

Efficient antiviral immunity requires interference with virus replication at multiple layers targeting diverse steps in the viral life cycle. Here we describe a novel flavivirus inhibition mechanism that results in interferon-mediated obstruction of tick-borne encephalitis virus particle assembly, and involves release of malfunctional membrane associated capsid (C) particles. This mechanism is ...

متن کامل

Construction and mutagenesis of an artificial bicistronic tick-borne encephalitis virus genome reveals an essential function of the second transmembrane region of protein e in flavivirus assembly.

Flaviviruses have a monopartite positive-stranded RNA genome, which serves as the sole mRNA for protein translation. Cap-dependent translation produces a polyprotein precursor that is co- and posttranslationally processed by proteases to yield the final protein products. In this study, using tick-borne encephalitis virus (TBEV), we constructed an artificial bicistronic flavivirus genome (TBEV-b...

متن کامل

Mimicking live flavivirus immunization with a noninfectious RNA vaccine.

Flaviviruses are human pathogens of world-wide medical importance. They have recently received much additional attention because of their spread to new regions (such as West Nile virus to North America), highlighting their potential as newly emerging disease agents. Using tick-borne encephalitis virus, we have developed and evaluated in mice a new genetic vaccine based on self-replicating but n...

متن کامل

Spontaneous mutations restore the viability of tick-borne encephalitis virus mutants with large deletions in protein C.

The capsid protein, C, of tick-borne encephalitis virus has recently been found to tolerate deletions up to a length of 16 amino acid residues that partially removed the central hydrophobic domain, a sequence element conserved among flaviviruses which may be crucial for virion assembly. In this study, mutants with deletion lengths of 19, 21, 27, or 30 residues, removing more or all of this hydr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 78 15  شماره 

صفحات  -

تاریخ انتشار 2004